\(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx\) [720]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 217 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=-\frac {b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}-\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{\left (a^2-b^2\right ) d}+\frac {\left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))} \]

[Out]

b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(b+a*sec(d*x+c))-b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d-(cos(1/2*d*x+1/2*c)^2
)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/(a^2-b^2)/d
+(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*
cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a-b)/(a+b)^2/d

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3317, 3930, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\frac {b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \left (a^2-b^2\right )}-\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}+\frac {\left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a-b) (a+b)^2} \]

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^2,x]

[Out]

-((b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a^2 - b^2)*d)) - (Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/((a^2 - b^2)*d) + ((3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticPi[
(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a - b)*(a + b)^2*d) + (b^2*Sqrt[Sec[c + d*x]]*Sin[c + d
*x])/(a*(a^2 - b^2)*d*(b + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(b+a \sec (c+d x))^2} \, dx \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))}+\frac {\int \frac {-\frac {b^2}{2}-a b \sec (c+d x)+\frac {1}{2} \left (2 a^2-b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))}+\frac {\int \frac {-\frac {b^3}{2}-\frac {1}{2} a b^2 \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a b^2 \left (a^2-b^2\right )}+\frac {\left (3 a^2-b^2\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))}-\frac {\int \sqrt {\sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )}-\frac {b \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a \left (a^2-b^2\right )}+\frac {\left (\left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {\left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 \left (a^2-b^2\right )}-\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a \left (a^2-b^2\right )} \\ & = -\frac {b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}-\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{\left (a^2-b^2\right ) d}+\frac {\left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a-b) (a+b)^2 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.34 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.37 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 a b^2 \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x)) \sqrt {\sec (c+d x)}}+\frac {\cot (c+d x) \left (a b \sec ^{\frac {3}{2}}(c+d x)+a b \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-a b \sec ^{\frac {7}{2}}(c+d x)-a b \cos (2 (c+d x)) \sec ^{\frac {7}{2}}(c+d x)+2 a b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {-\tan ^2(c+d x)}+2 \left (2 a^2-a b-b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}-6 a^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}+2 b^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}\right )}{(a-b) (a+b)}}{2 a^2 d} \]

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^2,x]

[Out]

((2*a*b^2*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]) + (Cot[c + d*x]*(a*b*Sec[c + d*x
]^(3/2) + a*b*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) - a*b*Sec[c + d*x]^(7/2) - a*b*Cos[2*(c + d*x)]*Sec[c + d*x]
^(7/2) + 2*a*b*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*(2*a^2 - a*b - b^2)*Ellipti
cF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 6*a^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]]
, -1]*Sqrt[-Tan[c + d*x]^2] + 2*b^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))
/((a - b)*(a + b)))/(2*a^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(611\) vs. \(2(281)=562\).

Time = 4.03 (sec) , antiderivative size = 612, normalized size of antiderivative = 2.82

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\frac {2 b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{a \left (a^{2}-b^{2}\right ) \left (2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a \left (a +b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {6 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(612\)

[In]

int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))-1/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))-6*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2
+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2
))+2/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \]

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*cos(c + d*x))**2, x)

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^2, x)